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Abstract

Current projections of the oceanic response to anthropogenic climate forcings are uncer-2

tain. Two key sources of these uncertainties are (i) structural errors in current Earth3

system models and (ii) imperfect knowledge of model parameters. Ocean tracers observa-4

tions have the potential to reduce these uncertainties. Previous studies typically consider5

each tracer separately, neglect potentially important statistical properties of the system,6

or use methods that impose rather daunting computational demands. Here we extend7

and improve upon a recently developed approach using horizontally averaged vertical8

profiles of chlorofluorocarbon (CFC-11), radiocarbon (∆14C), and temperature (T) obser-9

vations to reduce model parametric and structural uncertainties. Our method estimates10

a joint probability density function, which considers cross-tracer correlations and spatial11

autocorrelations of the errors. We illustrate this method by estimating two model param-12

eters related to the vertical diffusivity, the background vertical diffusivity and the upper13

Southern Ocean mixing. We show that enhancing the upper Southern Ocean mixing in14

the model improves the representations of ocean tracers, as well as improves hindcasts of15

the Atlantic Meridional Overturning Circulation (AMOC). The most probable value of16

the background vertical diffusivity in the pelagic pycnocline is between 0.1-0.2 cm2s−1.17
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According to the statistical method, observations of ∆14C reduce the uncertainty about18

the background vertical diffusivity the most followed by CFC-11 and T. Using all three19

tracers jointly reduces the model uncertainty by 40%, more than each tracer individu-20

ally. Given several important caveats, we illustrate how the reduced model parametric21

uncertainty improves probabilistic projections of the AMOC.22
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1. Introduction

The North Atlantic Overturning Circulation (AMOC) is a key component of the climate23

system [Munk & Wunsch, 1998]. Past changes in the AMOC intensity are associated with24

considerable changes in global scale temperature and precipitation patterns [McManus et25

al., 2004]. Anthropogenic climate forcings may trigger an AMOC threshold response, with26

potentially serious impacts on natural systems and human welfare [Patwardhan, 2007;27

Keller et al., 2000]. Current AMOC model predictions are deeply uncertain [Zickfeld et28

al., 2007; Meehl et al., 2007].29

Tracer observations such as chlorofluorocarbon-11 (CFC-11) and radiocarbon (∆14C)30

provide information on the ventilation rate and advective properties in the ocean on time-31

scales ranging from decadal to centennial that can be used for evaluating the skill of climate32

models in simulating the ocean circulation [Doney et al., 2004]. A better representation33

of these processes in models can possibly improve AMOC projections.34

A key variable for determining ocean circulation properties in models is the vertical35

ocean diffusivity (Kv). Changing this value in model simulations has a large impact on36

oceanic heat storage and transport, uptake of ocean tracers such as CO2 [Sokolov et al.,37

1998], and on the work necessary to lift the abyssal waters through stratification (that38

closes the MOC circulation) [Wunsch & Ferrari , 2004]. This variable is highly uncertain39

[Munk & Wunsch, 1998], and it is sometimes tuned in models to generate a realistic40

AMOC strength [Gao et al., 2003]. In addition, this parameter value affects the existence41

of multiple states of the MOC in model simulations [Schmittner & Weaver , 2001].42

, 5:23am



GOES ET AL.: TRACERS AND AMOC X - 5

Various processes lead to mixing in the ocean such as shear or buoyancy forced turbu-43

lence, interactions of flow with topography, and double diffusion (differential molecular44

diffusion of heat and salt). See Smyth & Moum [2001] and Moum & Smyth [2001] for re-45

views. Although General Circulation Models have been increasing their ability of parame-46

terizing subgrid scale turbulent processes in the ocean (Bryan & Lewis [1979]; Pacanowski47

& Philander [1981]; Large et al. [1994]; Ferrari et al. [2008]), due to the complexity of48

the problem and processes involved, most schemes are still highly simplified and param-49

eterized. In Earth System Models of Intermediate Complexity (EMICs), the absence of50

more complex parameterizations elevates the importance of the parameters related to Kv51

in order to fulfill the model necessity of turbulent mixing in simulating a realistic AMOC52

strength.53

Several studies [e.g. England , 1993; Gao et al., 2003] analyze the importance of the54

magnitude of the diffusivity strength and parameterization on the MOC structure and55

representations of tracers in ocean models. These studies are typically silent on the56

question of how much information is contained in the different types of observations. This57

is an important question, for example, to inform the design of AMOC observation and58

prediction systems [cf. Baehr et al., 2008; Keller et al., 2007].59

Schmittner et al. [2009] discusses a relatively simple but computationally efficient60

method to estimate the background ocean diffusivity Kbg from the combination of spa-61

tially resolved ocean tracer observations considering both, observational and model errors.62

However, Schmittner et al. [2009] neglects the effects of cross-correlation between different63

tracers, which limits the number of tracers that can be combined in a joined probability64

density function. In another recent study, Bhat et al. [2009] estimates the posterior prob-65
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ability distribution for Kbg using ∆14C and CFC-11 observations. Their approach uses a66

Gaussian process emulator for the climate model and estimates the distribution of Kbg67

via a Bayesian approach. While their kernel mixing based approach to constructing the68

emulator is flexible and efficient, it is conceptually complex and computationally highly69

demanding for routine use with more than two ocean tracers.70

Here we estimate the probability density function (pdf) of Kbg using three tracers si-71

multaneously. Our approach provides a fast and easy way to implement the methodology,72

enabling the routine use of information from several ocean tracers jointly, while still con-73

sidering spatial autocorrelation as well as cross-correlation between residuals of different74

tracers. We demonstrate how neglecting cross-correlation and/or simplifying the mean75

function can compromise the accuracy of the estimation. We improve the treatment of76

uncertainties surrounding Kv in the model by considering the structural uncertainty about77

the upper Southern Ocean mixing (u KSO). We show that an ensemble with enhanced78

Southern Ocean mixing is more consistent with the observations.79

Furthermore, we advance on previous work by quantifying and ranking the skill of the80

tracers CFC-11, ∆14C and temperature (T) to constrain the uncertainties in the model81

parameter Kbg. We demonstrate the potential utility of the considered observations to82

improve model predictions of the AMOC.83

2. Methods

2.1. Earth System Model of Intermediate Complexity

We use the University of Victoria Earth System Model of Intermediate Complexity84

(UVic 2.8; Weaver et al. [2001]). This model has been widely used in climate simulations85

and models comparisons studies. In the UVic model, we parameterize the diapycnal86
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diffusivity as Kv = Ktidal + KSO + Kbg, which consists of the diffusivity due to local87

dissipation of tidal energy and its resulting generation of turbulence and mixing (Ktidal,88

Simmons et al. [2004]), a parametrization for the vigorous mixing (KSO) observed in the89

Southern Ocean [e.g. Naveira Garabato et al., 2004], plus a background diffusivity Kbg90

that represents all other processes that lead to mixing, such as non-local dissipation of91

tidal energy, mesoscale eddy activity, double diffusion, hurricanes, interaction of flow with92

topography, and others.93

The model accounts for increased mixing over rough topography based on the tidal94

mixing scheme of St. Laurent et al. [2002], and uses the Gent & McWilliams [1990]95

eddy mixing parameterization. It is likely that Kbg is spatially and temporally variable96

in nature [Sriver et al., 2010], but due to a lack of a more explicit representation of the97

processes and for simplicity we assume a constant value of Kbg everywhere. Note that98

Ktidal decays exponentially (with an e-folding depth of 500 m above the sea floor) such that99

it is unimportant in the pelagic pycnocline (i.e., away from the boundaries). However,100

it is the value of Kbg in the pelagic pycnocline that is most important in determining101

the large scale ocean circulation in models [c.f., Marotzke, 1997; Munk & Wunsch, 1998].102

For the Southern Ocean (south of 40S) parametrization, the vertical mixing is truncated103

at 1 cm2/s as a lower bound (Kv > 1 cm2/s). The Southern Ocean is one of the most104

tempestuous oceans on earth, and these transient effects may produce strong turbulent105

mixing, specially in the upper Southern Ocean. In order to include uncertainties about the106

upper Southern Ocean mixing, we further divide the Southern Ocean mixing into upper107

(u KSO) and lower (l KSO) parts. Therefore, KSO = u KSO + l KSO, where u KSO is the108
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Southern Ocean mixing in the upper 500 m, and l KSO is the Southern Ocean mixing109

from 500m to the bottom of the water column.110

We create two ensembles to analyze the uncertainty in two model parameters, the111

background ocean diffusivity (Kbg) and the upper Southern Ocean diffusivity (u KSO).112

Each ensemble contains seven members, corresponding to a grid of the parameter Kbg113

values of (0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5) cm2s−1. The difference between the two114

ensembles is that in the first one (ENSEMBLE 1), the enhanced SO mixing is only applied115

in the lower part of the Southern Ocean, so in the upper SO the mixing is equal to the116

rest of the pelagic areas of the upper ocean (with indices u KSO=0, l KSO=1), whereas117

the second one (ENSEMBLE 2) uses an enhanced mixing in the entire column of the118

Southern Ocean (with indices u KSO=1, l KSO=1). As we are not varying the parameter119

l KSO, it is suppressed in the rest of the manuscript.120

The ocean component in UVic is MOM2 [Pacanowski , 1995] with a 1.8◦ × 3.6◦ reso-121

lution in the horizontal and 19 depth levels. The atmospheric component is a one-layer122

atmospheric energy-moisture balance model, which does not apply flux correction and123

is forced by prescribed winds from the NCAR/NCEP climatology. Also included in the124

model are a thermodynamic sea-ice component, a terrestrial vegetation (TRIFFID), and125

an oceanic biogeochemistry based on the ecosystem model of Schmittner et al. [2005].126

A total of 47,600 model years was preformed, what makes UVic suitable for this kind127

of study. At first, the model is spun up from observed data fields as initial conditions128

for 3000 years (with a coupled carbon cycle for the last 1000 years) for each parameter129

value. It is then integrated from years 1800-2100 using historical and projected climate130

forcings (SRES–A1FI scenario), extended to the year 2200 following Zickfeld et al. [2008].131
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We modify the model to include non-CO2 greenhouse gases, volcanic and sulfate forcings132

from Sato et al. [1993] and Hansen & Sato [2004]. Atmospheric sulfates data enter the133

model as gridded optical depth [Koch et al., 1999], and follow the same rate of decrease134

as the CO2 concentration after 2100.135

2.2. Data

We focus on a subset of observations that have previously been shown to provide con-136

straints on the parameterization of Kv in ocean models: (i) temperature (T), (ii) chlo-137

rofluorocarbon 11 (CFC-11), and (iii) radiocarbon (∆14C) observations [cf. Schmittner138

et al., 2009; Bhat et al., 2009; Toggweiler et al., 1989]. ∆14C is defined as the 14C/12C139

ratio of air-sea fractionation-corrected data [Stuiver & Polach, 1977]. Each of the trac-140

ers in this subset has a different behavior, and can constrain Kv in different ways. The141

temperature observations constrain Kv, because Kv affects, for example, the shape of the142

thermocline as well as the penetration of the anthropogenic heat anomalies [Gnanade-143

sikan, 1999]. The ∆14C observations can constrain Kv in two main ways, because it has144

a natural and an anthropogenic component. The natural component can provide infor-145

mation of mixing rates (that are, in turn, a function of Kv) in the order of centuries or146

millennia. The anthropogenic component, which greatly increased during the 1950s and147

1960s due to thermonuclear explosions, provides information on decadal time-scale. Here148

we do not make distinction between natural and bomb 14C, thus we use its total con-149

centration. The anthropogenic tracer CFC-11 also constrains Kv on decadal time-scale,150

because atmospheric emissions started in the 1930s. The solubility of CFCs in water is151

dependent on the temperature. Considering CFC-11 and ∆14C jointly can provide new152

insights into vertical oceanic mixing because they have very different forcing histories,153
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air-sea equilibration timescales and water solubility [Broecker & Peng , 1974; Ito et al.,154

2004], and the observation errors and signal-to-noise ratios of the two tracers are different.155

We analyze published data products for these three tracers [Locarnini et al., 2006; Key et156

al., 2004] and average the model hindcasts over the time the observations have been col-157

lected, i.e., 1990’s for CFC-11 and ∆14C, and 1950-2000 for temperature. We interpolate158

the observations to the model grid and the model output is restricted to the regions where159

the data products are available. All considered ocean tracer observations are horizontally160

averaged into global mean vertical profiles. Further, the probability distributions of the161

model parameters, inferred from the information of ocean tracers profiles, are compared162

with the distribution inferred from the climatological observations of the AMOC strength163

at 24◦N. For this purpose, we use the information of the AMOC strength calculated with164

the inverse model of Lumpkin & Speer [2003], which is estimated as (17.6±2.7 Sv). The165

model ensembles are calibrated against observations using a Bayesian inference method.166

We assume a Gaussian likelihood function and estimate the posterior probability of Kbg167

and u KSO given the observations through a Markov Chain Monte Carlo (MCMC) method168

[Metropolis et al., 1953]. Our method accounts for auto-correlations of the residuals, as169

well as cross-correlation between residuals of different tracers. For this, a separable co-170

variance matrix Σ is estimated. The inversion and the numerical implementation of the171

calibration procedure are detailed in the next subsection. Readers not interested in the172

details of the statistical inversion technique can skip the next subsection without loss of173

understanding.174

2.3. Bayesian model inversion
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The goal of Bayesian parameter estimation is to infer a probability distribution(s) p(θ|O)175

representing the uncertainty in one (or more) climate model parameter θ, conditional on a176

vector of observed data O. Here θ are parameters Kbg and u KSO, which are related to the177

vertical ocean diffusivity in UVic. The inferential procedure is based on a statistical model178

that relates the model parameters (θ) to the observations (O) by way of the ensemble of179

model output M(θ). The statistical model used here assumes that the observations are180

randomly distributed around the model prediction, according to181

O = M(θ) + ǫ , (1)

where the error is a random variable drawn from a multivariate normal distribution182

ǫ ∼ N(µ, Σ) , (2)

with an unknown mean or bias term µ and covariance matrix Σ. These distributional183

parameters are estimated along with the model parameter θ. The error term encompasses184

all processes which may cause the observations to deviate from the model predictions,185

including model structural error, unresolved variability in the climate system, and mea-186

surement error. We model these errors as random processes, approximated here by a187

potentially correlated Gaussian probability function.188

The error mean term µ represents model bias, which is common for each observed189

variable across ensemble members. Schmittner et al. [2009] assumed a bias which is190

constant with depth. Here we expand upon this form by using a general linear form that191

varies with depth (z), µ = az + b. This form improves the model fit as indicated by192
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a exploratory data analysis in the next section. The covariance matrix, described later,193

captures the residual variability that is unaccounted by the linear bias term.194

The above probability model describing the spread of observations about the model195

output defines a likelihood function L(O|θ, µ, Σ) for the data conditional on the model196

and covariance parameters:197

L(O|θ, µ, Σ) = (2π)−N/2|Σ|−1/2 exp

(

−
1

2
r̃T Σ−1r̃

)

, (3)

where Σ is a covariance matrix and r̃ = O−M(θ)−µ are the bias-corrected data-model198

residuals.199

Consider an ensemble M containing p runs of a climate model, where each run corre-200

sponds to a different value of a climate model parameter, θk, k = 1, . . . , p. For each ensem-201

ble member we analyze n ocean tracer profiles defined at d spatial locations (depths). The202

matrix Σ is nd × nd specifying the covariance between n tracers at d locations (depths).203

Assuming separability, Σ can be approximated by a Kronecker product of two matrices:204

Σ = ΣT ⊗ CS + ΣM , (4)

where ΣT corresponds to the n × n cross-covariance matrix of the tracers, and CS is205

the d× d spatial correlation matrix (in depth) respectively. ΣM is the data measurement206

error which we assume to be negligible compared to the other errors because of the spatial207

aggregation of the data.208

The cross-covariance matrix ΣT depends on n(n − 1)/2 cross-tracer correlation coef-209

ficients ρij (since ρij=ρji), and on residual standard deviations σi of the n individual210

tracers:211
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ΣT =









σ2

1
σ1σ2ρ12 . . . σ1σnρ1n

σ2σ1ρ21 σ2

2
. . . σ2σnρ2n

...
...

. . .
...

σnσ1ρn1 . . . . . . σ2

n









. (5)

We model the spatial correlation CS using a Gaussian correlation function, a special212

case of the Matérn class of covariance functions (see, for e.g., Stein [1999]). This function213

decays with distance between locations di and dj with a correlation length scale λ, assumed214

to be the same for all tracers:215

(CS)ij = exp

(

−
|di − dj|

2

λ2

)

. (6)

Given the property of the Kronecker product (see, for example, Lu & Zimmerman216

[2005]), the multivariate normal likelihood function L(y, θ) becomes:217

L(O|θ, µ, ΣT , CS) = (2π)−N/2(|ΣT |
d|CS|

n)−1/2 exp

[

−
1

2
r̃T (Σ−1

T ⊗ C−1

S )r̃

]

, (7)

where N = nd is the total number of data points, and r̃=[O1−M1−µ1, . . . , On−Mn−µn]T218

is the concatenated vector containing the misfit between the unbiased model predictions219

and the corresponding observations for the considered tracers. The Kronecker structure220

of Equation 4 allows the nd × nd matrix Σ to be efficiently inverted by inverting the two221

smaller matrices ΣT (n × n) and CS (d × d).222

Once the probability model has been specified in the form of a likelihood function, the223

Bayes’ theorem allows inference about the posterior distribution of θ. The theorem states224

that the posterior probability of the unknown parameters is proportional to their prior225

probability distribution, multiplied by the likelihood of the data, according to:226
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p(θ, a, b, σ, ρ, λ|O) ∝ L(O|θ, a, b, σ, ρ, λ) p(θ) p(a) p(b) p(σ) p(ρ) p(λ) . (8)

We draw 20,000 samples from the above posterior distribution by a Markov chain Monte227

Carlo (MCMC) algorithm. The MCMC algorithm jointly estimates the model parameters228

(θ = Kbg,u KSO), 2n bias coefficients (ai and bi), n standard deviations (σi), n(n − 1)/2229

cross-tracer correlations (ρij), and one correlation length (λ). This is an improvement230

upon the methodology of Schmittner et al. [2009] which held all parameters but θ fixed at231

optimized values, and did not consider the uncertainty in the other parameters. Because232

the model output is only defined on a discrete grid of values, the MCMC algorithm233

proposes discrete jumps for the parameters θ during its random walk through parameter234

space, and continuous moves for all other parameters.235

We choose a uniform prior p(θ) for the model parameters Kbg and u KSO. For the236

correlation length we apply the lognormal prior lnλ ∼ N(5.5, 0.52), such that the loga-237

rithm of λ is normally distributed with mean 5.5 and standard deviation 0.5. This prior238

locates most of the probability mass of the distribution between 0 and 600 meters. We use239

normal priors for the bias parameters ai and bi, p(ai)=N(0,(σi/λ)2) and p(bi)=N(0,σ2

i ).240

For the estimate of individual tracers distributions, where the cross-correlation matrix is241

a scalar (i.e. Σ = σ2

1
), we use a Jeffreys prior (p(σi) ∝ 1/Σ). When the multi-tracer242

cross-covariance matrix is estimated, we specify an inverse Wishart prior distribution243

ΣT ∼ IW (S, ν), with a diagonal scale matrix S = I and ν = 2n + 1 degrees of freedom.244

A diagonal scale matrix reduces spurious correlations by penalizing tracer residuals which245

are not independent of each other. Spurious correlation is not a problem when the data246

dimension is large, but when the data are sparse such a regularization procedure is pru-247
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dent (see, for instance, Barnard et al. [2000] or Chapter 19 in Gelman et al. [2003], and248

references therein).249

Equation (8) provides the joint posterior probability of both the model parameter and

the bias and covariance parameters. The marginal posterior probability of the model

parameter alone is obtained by integrating the joint posterior over all other parameters:

p(θ|O) =

∫

p(θ, a, b, σ, ρ, λ|O) da db dσ dρ dλ . (9)

Since the posterior is estimated by MCMC sampling, this posterior distribution of θ is250

easily obtained by simply considering the θ samples while ignoring the samples for the251

other parameters.252

3. Results

3.1. Effect of ocean diapynal diffusivity on the AMOC hindcasts and spatial

fields

In the adopted model the AMOC strength is positively correlated with the parameters253

Kbg and u KSO (Figure 1). Kbg has a strong influence on the model hindcasts of the254

maximum AMOC strength, while the AMOC sensitivity to u KSO is weaker. The range255

of AMOC strength varies from about 5–23 Sv across all simulations. The inclusion of256

enhanced upper Southern Ocean mixing (u KSO = 1), can increase the AMOC by a few257

Sverdrups, with more influence at lower Kbg. Under the projected climate forcings, the258

AMOC strength decreases in most cases, but it is more sensitive (in absolute values) to259

the considered forcings for higher diffusivity values. Due to the strong dependence of the260

AMOC structure and behavior on the values of the parameters Kbg and u KSO in this261

model, a reduction in the parametric uncertainty has the potential to improve AMOC262

hindcast and projection in the model.263
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The different parameter values result in different hindcasts of ocean tracers such as CFC-264

11 (Figure 2) and ∆14C (Figure 3), due to the different tracers advection and diffusion rates265

in the model. Higher Kbg values result in stronger vertical water exchange, increased deep266

water mass formation, which carries water with higher tracer content from the surface, and267

decreased vertical stratification in the ocean. u KSO broadly produces the same effects268

of Kbg. Nevertheless, u KSO impacts more heavily the lower Kbg runs and the Southern269

Ocean stratification.270

Here we analyze the tracers concentrations as vertical profiles of their averaged con-271

centrations over the globe. We consider three different observations, CFC-11, ∆14C and272

T (Figure 4, shown as an example for ENSEMBLE 1). In general, the observations are273

contained by the model ensemble spread, except for T in the deep ocean, which is too274

cold in the model.275

3.2. The uncertainty of the statistical inversion

The inversion method uses the information contained in the tracers to estimate the276

model parameter Kbg, taking into account uncertainties in u KSO. Key improvements277

compared to Schmittner et al. [2009] are: (i) the estimation of the cross-correlation terms;278

(ii) a more refined representation of structured biases in the Likelihood function; and279

(iii) the consideration of the effects of the structural uncertainty (specifically about the280

implementation of mixing in the SO). Here we demonstrate how these improvements affect281

the joint posterior pdf of the model parameters. We test the sensitivity of the method to282

the choice of the statistical (or nuisance) parameters for the distribution of Kbg. In this283

sensitivity test, we do not account for uncertainties in the parameter u KSO. Therefore,284

we only use outputs from ENSEMBLE 1.285
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For illustration, we use two tracers, ∆14C and T, as input for the statistical inversion.286

We calculate four inversion, which vary the number of statistical parameters to be esti-287

mated. The structure of the errors differ from each other by the representation of two288

main parameters, the bias and the cross-correlation of the residuals between the model289

and the observations. The bias term represents our guess of the mean function of the290

residuals. We demonstrate the trade-off between complexity of the bias-correction and291

the covariance structure of the residuals in this simple sensitivity study.292

Specifically, we analyze four different assumptions about the structural error terms.293

First, we use a simple case where the bias is constant and there is no residuals cross-294

correlation; second, we use a constant bias and estimate the cross-correlation; third we295

estimate a linear bias but no residual cross-correlation; and fourth, in which linear bias296

and cross-correlation are both estimated. To summarize the experiments in the sensitivity297

study, we have: a) µ = b, ρ =0, b) µ = b, ρ = ρ̂, c) µ = az + b, ρ =0, and d) µ = az + b,298

ρ = ρ̂. Note that the calibration also estimates standard deviation, correlation length and299

the model parameter, as described in Section 2.3. Comparing all pdfs (Figure 5) we see300

that for the individual pdfs the representation of the bias term can be essential for the301

model parameter estimation. When a more simplified bias (µ = b) is applied (Figures 5a302

and 5b), the pdfs in this example are displaced toward higher Kbg values, and centered303

on 0.3 and 0.4 cm2s−1. In contrast, with the linear bias estimations, the mode of Kbg pdf304

is centered around 0.15 and 0.2 cm2s−1. For the cases with linear bias (cases c and d),305

the standard deviation of the residuals of both tracers (Table 1) decrease in comparison306

to the constant biases cases (cases a and b). On the other hand, the standard deviations307

of the residuals are not influenced by the addition of cross-correlation parameters.308
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The inclusion of the cross-correlation parameter impacts the position of the joint pos-309

terior (black curves), and its strength is closely related to the representation of the bias.310

When the bias has a better representation, which is the linear bias case here (Figures 5c311

and 5d), the cross-correlation term has little influence on the joint pdf. A comparison of312

the strength of the cross-correlation parameters (cases (b) and (d) in Table 1) shows that313

ρ = 0.70 when µ is constant, and is much smaller ρ = 0.40 when µ is linear. Compar-314

ing the posteriors of the cases (a) and (b) (Figures 5a and 5b), ρ can visibly change the315

posterior when the mean function is less structured. Case (b) shows a counterintuitive316

result where the posterior mode is distant from the modes of the individual components317

(Figure 5b). This result indicates that with a relatively poor representation of the mean318

(bias) function, considering or neglecting the effects of this residual cross-correlation can319

drastically change the Kbg posterior estimate. This effect becomes less pronounced, as320

the representation of the model bias term improves (eg. Figure 5b vs. Figure 5c). As321

discussed by Cressie [1993] (pp. 25), “What is one person’s (spatial) covariance structure322

may be another person’s mean structure”. In other words, there is a trade-off between323

estimating a mean function for the tracer residuals to account for structural model er-324

rors and the magnitude of the residual cross correlation across the considered sources of325

information.326

3.3. Estimating the uncertainty of vertical diffusivity

The analysis so far illustrates how different tracers observations can be combined to327

reduce uncertainty about one mixing parameter (Kbg). This reduction in parametric328

uncertainty results, at least in the framework of the adopted model, in a reduction of the329

prediction uncertainty about the AMOC. Of course, there are several caveats associated330
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with structural errors and other neglected uncertainties in this study. We return to this331

issue in the Section 4, below. In this section we illustrate how this information can332

potentially be used to reduce uncertainties in two model parameters and improve model333

hindcasts and projections of the AMOC. Here the inversion uses our best estimate of334

the model bias term (linear), and accounts for cross-tracer correlation. We make three335

inversions (Figure 6), one to estimate Kbg for the ENSEMBLE 1, a second to estimate Kbg336

for the ENSEMBLE 2, and a third inversion which uses information from both ensembles337

to generate probability distributions for Kbg and u KSO in a Bayesian model average338

fashion.339

Information from the three considered tracers, CFC-11, T and ∆14C, is introduced in340

the statistical inversion for the estimation of uncertainties in the model parameters. For341

comparison, we also show in Figure 6 the Kbg pdf obtained using the climatological AMOC342

observations. The Kbg pdf is derived from estimate of the climatological AMOC strength343

of Lumpkin & Speer [2003] by assimilating a single data point assuming a normally dis-344

tributed error. In principle, the model could be calibrated with both the ocean tracers and345

AMOC strength data by using the derived AMOC pdf as a prior for Kbg. However, this346

would neglect potential correlations between ocean tracer and AMOC strength residual347

errors. As a proper treatment of AMOC/tracer correlations is beyond the scope of this348

work, we present the AMOC-derived pdf just for comparison, without assimilating it in349

the joint posterior pdf.350

The tracers distributions of both ensembles show similar behavior. Nevertheless, the351

ENSEMBLE 1 (Figure 6a) has in general higher Kbg modes in comparison to ENSEMBLE352

2 (Figure 6b). This result shows that the additional mixing over the upper Southern Ocean353
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increases the overall magnitude of Kv, without changing Kbg, and tends to intensify the354

AMOC. The posterior pdf for Kbg, obtained by assimilating observations of the AMOC355

strength only (lines with triangles), is also displaced to lower values in ENSEMBLE 2,356

because ENSEMBLE 2 has stronger AMOC values for the same Kbg (Figure 1)357

When information from both ensembles are added together (Figures 6c and 6d), the358

ENSEMBLE 2 dominates the Markov chain for ∆14C and T, with probabilities of 100 %359

and 65 % for ENSEMBLE 2, respectively. Conversely, CFC-11 has 80% probability of360

happening ENSEMBLE 1 (Figure 6d). The joint posterior of all tracers encompassing the361

two ensembles (Figure 6c) is entirely described by ENSEMBLE 2, therefore the posteriors362

in Figures 6b and 6c are practically identical.363

When all the two model parameters are assimilated jointly (Figure 6c), the considered364

sources of information have rather different skill in improving Kbg estimates and AMOC365

predictions (see Table 2 for the properties of the statistical distributions). ∆14C has the366

highest information content with respect to improving Kbg estimates, its posterior 95 %367

credible interval (CI) is the tightest (0.21 cm2s−1) in comparison to the other tracers.368

CFC-11 comes in second, with a 95 % CI of 0.24 cm2s−1, and T comes last with the369

largest CI of 0.26 cm2s−1.370

Combining the information of the three considered tracers (line with squares in Figure371

6c), favors Kbg values in the lower part of the considered range, from 0.1–0.2 cm2s−1.372

Note that the joined probability density function is narrower than each individual pdf373

indicating an advantage of using multiple tracer observations in reducing the parameter374

uncertainty.375
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As discussed in previous studies [e.g. Schmittner et al., 2009], the Kbg value in a coarse376

resolution ocean model represents the effects of background diffusivity combined with377

subgridscale diffusivity (i.e., a model shortcoming). Another shotcoming for coarse z-378

coordinate ocean models is the numerical diffusivity (Veronis effect), which can generate379

spurious diapycnal diffusion, especially in long climate simulations, in western boundary380

regions and regions where the isoneutral slope is large [Griffies et al., 1998, 2000]. Hence,381

even if our model-based estimate does not represent directly the observational estimate of382

pelagic diffusivity of 0.1 cm2s−1 [Ledwell et al., 1993], they appear to be more consistent383

when we improve on the parametrization of regional mixing in the model.384

3.4. AMOC projections

The joint posterior Kbg and u KSO estimates (Figures 6c and 6d) can be used to derive385

model projections of the AMOC in 2100 and 2200 (Figure 7). The model hindcast for the386

maximum AMOC strength in 2000 is about 15–15.5 Sv. In 2100, the expected strength for387

the AMOC in this model is about 11 Sv. In 2200 the AMOC shows a slight strengthening388

relative to the 2100 conditions with an expected value of roughly 12 Sv.389

The Kbg and u KSO estimates suggest an AMOC hindcast for the year 2000 (Figure 7)390

that is about 2 Sv weaker than the climatological AMOC estimates of Lumpkin & Speer391

[2003]. The inclusion of the parameter u KSO in the analysis reduces significantly the392

discrepancy of the AMOC estimates relative to the Kbg (Figure 6c). Other systematic393

model bias(es), such as too weak buoyancy forcing (e.g. from errors in the simulation394

of the atmospheric hydrological cycle and surface freshwater fluxes) can compromise the395

estimates of the current and projected AMOC strength for the Uvic model. Further396

discussion and implications are described in the next section.397
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4. Caveats

Our results are subject to many caveats. These caveats point to potentially fruitful398

research directions. In the statistical part, we consider only highly aggregated data.399

Basinwide zonal averages could, for example, provide potentially useful information on400

where the model performs better. In the projection part, other model parameters, such401

as those affecting the response of the ocean-atmosphere coupled system, for example, the402

hydrological cycle [Saenko & Weaver , 2004], climate sensitivity or sensitivity of climate403

to aerosol concentrations, [cf. Tomassini et al., 2007; Forest et al., 2002], are also highly404

uncertain, and can impact (probably widen) probabilistic AMOC projections and should405

be considered. In addition, the atmospheric model in UVic is rather simplified, and406

neglects important ocean-atmosphere feedbacks.407

UVic does not use flux correction. Freshwater flux correction is known to improve the408

salinity and stratification in ocean models [Sorensen et al., 2001], and can be used to409

improve projections and hindcasts.410

In the hindcasts part, other parameters linked to both diapycnal and isopycnal mixing411

may affect the structure of the AMOC. Nevertheless, according to Jayne [2009], tidal412

mixing parameters in the St. Laurent et al. [2002] parameterization have relatively low413

impact on the strength of the AMOC, and that upper-ocean wind-driven mixing may have414

a much stronger impact.415

We show how including regional aspects of vertical mixing can improve the representa-416

tion of the AMOC. The model parameters uncertainties need to be estimated together as417

performed here, since addition of new parameters can change the structure of the other418

calibrations. Jayne [2009] describes, “this is the typical conundrum: it is difficult to as-419
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sess whether any of the given parameterizations improve the model since comparing to420

observational metrics may obscure compensating errors in different parameterizations”.421

5. Conclusion

We develop and apply a computationally efficient and statistically sound method to422

rank and quantify the skill of different sources of information to reduce the uncertainty423

about ocean model parameters and the resulting climate predictions. We improve on424

previous work by (i) refining the estimation of errors in the model structure, (ii) including425

several ocean tracers and two model parameters at once in a computationally efficient426

fashion, and (iii) quantifying and ranking the skill of different sources of information to427

reduce the uncertainty about a model parameter. Subject to the aforementioned caveats,428

we show how ∆14C, CFC-11, and T together sharpen the estimates of Kbg by 40 % and429

improve AMOC projections in the UVic model.430

The Kbg derived from individual observations (i.e., ∆14C, CFC-11, T) are broadly con-431

sistent, but show slight discrepancies that we attribute predominantly to structural model432

errors. Of the considered observations, ∆14C has the highest skill in reducing uncertainties433

in AMOC projections, but it is also the most distant from the pdf observational derived434

AMOC estimates. ∆14C is followed (in decreasing skill of being able to reduce Kbg uncer-435

tainty) by CFC-11 and T. The second parameter analyzed in this work, u KSO improved436

the representations of C14 and T in the model, and improves the representation of the437

AMOC strength.438

AMOC projections show a reduction of the maximum of the joint posterior in 2100439

by roughly 25% (3.5 Sv). Perhaps both surprisingly and encouraging, the pdfs of Kbg440

estimated in this study are quite similar among the considered ocean tracers and the two441
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ensembles analyzed, which have different different representations of the upper Southern442

Ocean mixing and AMOC. This convergence of Kbg estimates based on different sources443

of information and parameterizations suggest that Kbg can be robustly estimated from444

the oceanic tracers studied here.445
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List of Figure Captions

Figure 1. AMOC strength (Sv), defined as the maximum of the transport streamfunc-622

tion, from years 1800 to 2200. Dashed lines are for the ENSEMBLE 1 (u KSO = 0); solid623

lines are for the ENSEMBLE 2 (u KSO = 1).624

Figure 2. Zonal averages for the Atlantic Ocean of CFC-11 concentration in [pmol/Kg]625

(colorbars) and density anomalies in [Kg/m3] (contour lines) for the model with diffu-626

sivity of Kbg =0.05 (top panels) and Kbg =0.5 (middle panels). The left column is for627

ENSEMBLE 1 (u KSO=0) and right column for ENSEMBLE 2 (u KSO=1). The bottom628

panel shows the observations from [Key et al., 2004] and [Locarnini et al., 2006].629

Figure 3. Zonal averages for the Atlantic Ocean of ∆14C concentration in permil (col-630

orbars) and density anomalies in [Kg/m3] (contour lines) for the model with diffusivity of631

Kbg =0.05 (top panels) and Kbg =0.5 (middle panels). The left column is for ENSEMBLE632

1 (u KSO=0) and right column for ENSEMBLE 2 (u KSO=1). The bottom panel shows633

the observations from [Key et al., 2004] and [Locarnini et al., 2006].634

Figure 4. Global averaged profiles of CFC-11 [Key et al., 2004], ∆14C [Key et al., 2004]635

and T [Locarnini et al., 2006], for the observations (gray dots) and model ENSEMBLE 1636

(colored lines). The legend for the model Kbg values is the same as in Figure 1.637

Figure 5. Sensitivity of the model parameter estimation to different treatments of638

structural model errors. Shown are the posterior probability density function of ∆14C639

(red lines with crosses) and T (blue lines with circles), and the joint posterior using both640
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observations (black line with squares). The panels are for the cases discussed in the text:641

a) [µ = b, ρ =0]; b) [µ = b, ρ = ρ̂]; c) [µ = az + b, ρ =0]; d) [µ = az + b, ρ = ρ̂].642

Figure 6. Posterior probability density function of the model parameters for all con-643

sidered sources of information, the joint posterior using all available information from644

observations (line with squares). The climatological AMOC estimate of [Lumpkin &645

Speer , 2003] is plotted for comparison (line with triangles). The Kbg estimates are for646

a) ENSEMBLE 1, b) ENSEMBLE 2, c) ENSEMBLE 1 + ENSEMBLE 2; d) the u KSO647

estimate is for ENSEMBLE 1 + ENSEMBLE 2648

Figure 7. Joint posterior probability density function of model projections of the649

maximum AMOC strength in the years 2000, 2100 and 2200 using information from the650

∆14C, CFC-11 and T observations. The climatological AMOC estimate of [Lumpkin &651

Speer , 2003] is added for comparison (line with triangles).652

, 5:23am



GOES ET AL.: TRACERS AND AMOC X - 35

Table 1. Properties of the statistical distributions of the sensitivity test for the best Kbg:

mode, bias (µ = az + b), standard deviation and cross-correlation of residuals for ∆14C and T,

and mode of the posterior (joint distribution considering all tracers information).

Exp. Mode (cm2s−1) bias (a,b) σ Cross-corr. Mode of
∆14C T ∆14C T ∆14C T at best Kbg posterior

a) 0.3 0.4 (-14.0,0) (0.45,0) 12.5 0.6 – 0.3
b) 0.3 0.4 (-14.0,0) (0.45,0) 12.5 0.6 0.70 0.2
c) 0.15 0.2 (-16.1,9e-3) (0.22,3.3e-4) 7.7 0.28 – 0.15
d) 0.15 0.2 (-16.1,9e-3) (0.22,3.2e-4) 7.7 0.28 0.40 0.15

Table 2. Properties of the statistical distributions (mode, mean and 95% credible interval [CI]

(cm2s−1)) of Kbg (Figure 6c) for each considered sources of information, the posterior (joint dis-

tribution considering all tracers information), and the climatological AMOC estimate (Lumpkin

& Speer [2003]). Also shown are the cross-tracers correlation at the best Kbg value estimated in

the joint posterior.

Observation Mode Mean 95% CI Cross-corr. at best Kbg

∆14C CFC-11 T
∆14C 0.15 0.15 0.22 1 0.06 0.38
CFC-11 0.20 0.23 0.26 – 1 0.02
T 0.15 0.18 0.26 – – 1
posterior 0.15 0.16 0.17 – – -
AMOC clim 0.20 0.20 0.42 – – -
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Figure 1. AMOC strength (Sv), defined as the maximum of the transport streamfunction,

from years 1800 to 2200. Dashed lines are for the ENSEMBLE 1 (u KSO = 0); solid lines are for

the ENSEMBLE 2 (u KSO = 1).
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Figure 2. Zonal averages for the Atlantic Ocean of CFC-11 concentration in [pmol/Kg]

(colorbars) and density anomalies in [Kg/m3] (contour lines) for the model with diffusivity of

Kbg =0.05 (top panels) and Kbg =0.5 (middle panels). The left column is for ENSEMBLE

1 (u KSO=0) and right column for ENSEMBLE 2 (u KSO=1). The bottom panel shows the

observations from [Key et al., 2004] and [Locarnini et al., 2006].
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Figure 3. Zonal averages for the Atlantic Ocean of ∆14C concentration in permil (colorbars)

and density anomalies in [Kg/m3] (contour lines) for the model with diffusivity of Kbg =0.05

(top panels) and Kbg =0.5 (middle panels). The left column is for ENSEMBLE 1 (u KSO=0)

and right column for ENSEMBLE 2 (u KSO=1). The bottom panel shows the observations from

[Key et al., 2004] and [Locarnini et al., 2006].
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Figure 4. Global averaged profiles of CFC-11 [Key et al., 2004], ∆14C [Key et al., 2004] and

T [Locarnini et al., 2006], for the observations (gray dots) and model ENSEMBLE 1 (colored

lines). The legend for the model Kbg values is the same as in Figure 1.
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Figure 5. Sensitivity of the model parameter estimation to different treatments of structural

model errors. Shown are the posterior probability density function of ∆14C (red lines with

crosses) and T (blue lines with circles), and the joint posterior using both observations (black

line with squares). The panels are for the cases discussed in the text: a) [µ = b, ρ =0]; b) [µ = b,

ρ = ρ̂]; c) [µ = az + b, ρ =0]; d) [µ = az + b, ρ = ρ̂].
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Figure 6. Posterior probability density function of the model parameters for all considered

sources of information, the joint posterior using all available information from observations (line

with squares). The climatological AMOC estimate of [Lumpkin & Speer , 2003] is plotted for

comparison (line with triangles). The Kbg estimates are for a) ENSEMBLE 1, b) ENSEMBLE 2,

c) ENSEMBLE 1 + ENSEMBLE 2; d) the u KSO estimate is for ENSEMBLE 1 + ENSEMBLE

2
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Figure 7. Joint posterior probability density function of model projections of the maximum

AMOC strength in the years 2000, 2100 and 2200 using information from the ∆14C, CFC-11 and

T observations. The climatological AMOC estimate of [Lumpkin & Speer , 2003] is added for

comparison (line with triangles).
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